COMMENTS

Comment on "*Ab Initio* Characterization of HOClO₃ and HO₄Cl: Implications for Atmospheric Chemistry"

A. I. Karelin

Institute for New Chemical Problems, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia

Received: March 18, 1996; In Final Form: November 22, 1996

This comment concerns a recent paper in this journal by J. S. Francisco.¹ Using an *ab initio* method, the author determined the harmonic vibrational frequencies and infrared intensities for the HClO₄ molecule. He believes that, calculated at the MP2/ 6-31G (2d, 2p) level of theory, the frequencies are in fair agreement with the spectroscopic data. The comparison is made with the infrared spectra reported by Giguere and Savoie.² However, it was shown later³ that these data were erroneous in that some Cl₂O₇ impurity frequencies were attributed to HClO₄. Moreover, the resonance splitting of the ν_{as} (ClO₃) a'a"band by the δ (OH) a' mode was not found either.

To eliminate the Cl₂O₇ impurity from HClO₄, a special procedure was developed.⁴ It was also shown that the resonance splitting results in the three band appearance at 1201 (a' type), 1265 (a'' type), and 1326 cm⁻¹ (a' type). This splitting disappears upon deuteration, and a single infrared band ν_{as} (ClO₃) a'a'' is observed at 1282 cm⁻¹.³

To establish the true degree of confidence of the *ab initio* spectrum determination, we present, for comparison, the refined experimental frequencies as well as infrared relative intensities taken ref 3 in Table 1. The comparison shows that the agreement between the *ab initio* and experimental frequencies is rather poor for v_2 , v_9 , and v_{11} modes. The indicated *ab initio* v_2 , v_9 , and v_{11} frequencies agree well only with the data recorded in ref 2. A considerable discrepancy is observed between the calculated and experimental infrared intensities for v_2 , v_3 , and v_9 and especially for v_{11} modes. This leads one to the conclusion that a satisfactory reproduction of the HClO₄ vibrational spectra at the present level of *ab initio* methods is still a hard task.

Of greater interest are the calculations on the equilibrium structure of HClO₄ performed at various levels of *ab initio* theory both by Francisco¹ and by Casper et al.⁵ Surprisingly, Francisco does not even make reference to the data in ref 5, which were also published in this journal. The minimum-energy structure calculation performed by both groups of authors at all levels revealed that the hydrogen atom on HClO₄ prefers to orient in the staggered position and also indicated a small ClO₃ group distortion. These data are consistent with the known peculiarities of the HClO₄ gas infrared spectrum.³ Indeed, the resonance splitting of the ν_{as} (ClO₃) a'a" band is a consequence of the OH group preferential orientation. The accidental degeneracy of ν_6 and ν_{10} modes as well as ν_8 and ν_{11} modes indicates the ClO₃ group symmetry is very close to $C_{3\nu}$. On

FABLE 1: Calculated ab Init	io Vibrational Parameters and
Experimental Infrared Data for	or HClO ₄

		frequencies (cm ⁻¹)		relative intensities	
	mode no.	calc [1]	expt [3]	calc [1]	expt [3]
a'	1	3554	3553	0.4	0.4
	2	1225	1326	1.0	0.6
	3	1215	1201	0.6	0.4
	4	1016	1048	0.3	0.5
	5	690	726	0.7	1.0
	6	551	582	0.1	а
	7	526	555	0.007	
	8	395	421	0.01	b
a″	9	1333	1265	0.6	0.9
	10	552	582	0.07	а
	11	500	421	0.3	b
	12	357		0.03	

^{*a*} $(D\nu_6 + D\nu_{10})/D\nu_5 = 0.2$ (calculated value is 0.2). ^{*b*} $(D\nu_8 + D\nu_{11})/D\nu_5 = 0.02$ (calculated value is 0.4).

the other hand, the $\nu_{as}(ClO_3)$ a'a" band of DClO₄ (C_s) is broader than the corresponding $\nu_{as}(ClO_3)$ e band of FClO₃ ($C_{3\nu}$), which suggests some small distortion of ClO₃ group. The half-width of those bands is 50 and 34 cm⁻¹ for DClO₄ and FClO₃, respectively. The $\nu_{as}(ClO_3)$ a'a" band splitting apparently does not exceed 15 cm⁻¹ for DClO₄.

In contradiction with the infrared data, Francisco¹ concludes that the hydrogen atom rotates freely about the OCIO₃ group at room temperature. His conclusion is based upon the estimation of the 3-fold potential barrier, which is 0.59 kcal mol⁻¹ at the MP-2/6-31G (2d, 2p) level. As he states, since there is free rotation, this suggests that CIO bonds measured by the electron diffraction studies may represent a group average. Akishin et al.⁶ and Clark et al.⁷ did not reveal (or did not try to find) any distortion of the CIO₃ group in actuality, performing the appropriate gas HCIO₄ experiments. However, carrying out a joint gas HCIO₄ electron diffraction and microwave spectroscopic study, Casper et al.⁵ found that it was not possible to fit the diffraction intensities and rotational constants simultaneously, assuming $C_{3\nu}$ symmetry for the CIO₃ group.

It is interesting to note that no ClO_3 group distortion was found for parent FOCIO₃, $ClOClO_3$, and Cl_2O_7 molecules by the gas electron studies and *ab initio* calculations.^{5,8}

References and Notes

(1) Francisco, J. S. J. Phys. Chem. 1995, 99, 13422.

(2) Giguere, P. A.; Savoie, R. Can. J. Chem. 1962, 40, 495.

(3) Karelin, A. I.; Grigorovich, Z. I.; Rosolovski, V. Ya. Spectrochim. Acta 1975, 31A, 765.

(4) Karelin, A. I.; Grigorovich, Z. I.; Rosolovski, V. Ya. Izv. Akad. Nauk SSSR, Ser. Khim. (Proc. Acad. Sci. USSR, Ser. Chem.) 1975, 665.

(5) Casper, B.; Mack, H.-G.; Muller, H. S. P.; Willner, H.; Oberhammer, H. J. Phys. Chem. 1994, 98, 8339.

(6) Akishin, P. A.; Vilkov, L. V.; Rosolovski, V. Ya. Kristallografija 1959, 4, 353.

(7) Clark, A. H.; Beagley, B.; Cruickshank, D. W. J.; Hewitt, T. G. J. Chem. Soc. A **1970**, 1613.

(8) Beagley, B. Trans. Faraday Soc. 1965, 61, 1821.